Unique 18-mm-dia. Capacitive Touch Switch with Choice of Three Actuators is Activated with Only a Very Slight Physical Contact

■ Only a slight activation force is required, enabling detecting micro deflections, thin wires, or thin-plate conductors (e.g., steel or stainless). Application possible for non-conductors by indirectly connecting to ground.

- Instantaneous operation upon contact with extremely limited hysteresis for high-precision position detection.
■ Diameter of only 18 mm with standard built-in amplifier, operation indicator, and sensitivity adjustment.
■ Conforms to IEC IP67 *
- Freely replaceable antenna with screw mounting.
- Free attachment to enable changing the antenna shape according to the application.
* Malfunction may occur if used in locations subject to water or oil.

Application Examples

Detection of Incorrectly Set Work

Detection of Fine Wire or Thin Plate

Detection of End of Cloth or Paper
(Detected with indirect ground)

Press Position Confirmation

Detection of Loose Screws

Detection of Seams in Cloth or Paper
(Detected with indirect ground)

Detection of Bent Drills

Detection of Loose Wires

Ordering Information

Item	Features Actuator	Usable by bending tip of antenna. - Overtravel of $\mathbf{2 0} \mathbf{~ m m}$ max.	-Ideal for high-accuracy position control. -Overtravel of 3.5 mm max.	-Any actuator can be attached.
		Coil spring	Plunger	Free-attachment
		Model	Model	Model
Supply voltage (Power supply)	AC	D5C-1DS0	D5C-1DP0	D5C-1DA0
	DC	D5C-1AS0	D5C-1AP0	D5C-1AA0
Antenna only		D5C-00S0	D5C-00P0	D5C-00A0

Note: The lead wire is 3 m .

Specifications

Ratings and Characteristics

Item	Type Model	DC	AC
		D5C-1D $\square 0$	D5C-1A $\square 0$
Degree of protection		Equivalent to IP67	
Mechanical durability		10,000,000 operations min. (at rated overtravel value)	
Supply voltage (operating voltage)		12 to 24 VDC (10 to 30 VDC), (ripple: 10\% max.)	100 to 240 VAC (45 to 264 VAC), $50 / 60 \mathrm{~Hz}$
Rated frequency		---	$50 / 60 \mathrm{~Hz}$
Sensitivity setting range		30 to 100 pF	
Current consumption		17 mA max.	---
Leakage current	Circuit	---	2 mA max.
	Antenna	1 mA max.	1 mA max.
Response time		2 ms max .	8 ms max .
Output current		200 mA max. (resistive load)	
Insulation resistance		$50 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC$)$ between lead wires and case	
Dielectric strength		1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying metal parts and non-current-carrying metal parts	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying metal parts and non-current-carrying metal parts
Rated insulation voltage (Ui)		1,000 VAC	
Pollution degree (operating environment)		3 (IEC947-5-1)	
Protection against electric shock		Class II	
Proof tracking index (PTI)		175	
Switch category		D (IEC335)	
Vibration resistance		10 to 55 Hz , 1.5-mm double amplitude	
Shock resistance		$1,000 \mathrm{~m} / \mathrm{s}^{2} \mathrm{~min}$.	
Ambient temperature		Operating: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (with no icing)	
Ambient humidity		35\% to 95\%RH	
Weight		Approx. 110 g (in case of D5C-1DS0)	Approx. 120 g (in case of D5C-1AS0)

Engineering Data (Typical Examples)

Temperature Characteristics of DC Models
D5C-1D $\square 0$ (24 VDC)

Voltage Characteristics of DC Model D5C-1D $\square \mathbf{0}$ (Ambient temperature: $\mathbf{2 5}^{\circ} \mathrm{C}$)

Temperature Characteristics of AC Models D5C-1A $\square 0$ (100 VAC)

Voltage Characteristics of AC Model
D5C-1A $\square \mathbf{0}$ (Ambient temperature: $\mathbf{2 5}^{\circ} \mathrm{C}$)

Structure and Nomenclature

Nomenclature

Operating Principle

Series Classification and Features

Connections

Output Circuit Diagram

The lead wire colors of the D5C have been changed in compliance with the latest applicable JIS standards. Colors in parentheses are previous ones.

D5C-1D $\square 0$ (DC Model)

D5C-1A $\square 0$ (AC Model)

Dimensions

DC Models

Coil Spring

D5C-1DS0

Plunger

D5C-1DP0

Free-attachment
D5C-1DA0

AC Models

Coil Spring

Plunger

D5C-1AP0

Free-attachment

Safety Precautions

For details, be sure to read Safety Precautions for All Limit Switches.
@ CAUTIONS

Make sure that the antenna does not come into contact with the human body, otherwise an electric shock may be received.

Precautions for Correct Use

Mounting

Do not tighten the nuts with excessive force. The maximum permissible tightening force of each nut with a washer is $29.4 \mathrm{~N} \cdot \mathrm{~m}$.

Grounding of Antenna and Sensing

Mounting Hole Dimension

Object

<Size of Sensing Object>

- Grounded Object

If the sensing object is the following grounded conductor, its size will not affect the operation of the D5C. Check for the presence of insulators sticking to the sensing object or the corrosion of the sensing object, however, so that the ground resistance will not exceed $3 \mathrm{k} \Omega$
Contact with Grounded Conductor
The sensing object is equivalently grounded through
ground resistor \mathbf{R}.

R: $3 \mathrm{k} \Omega$ max.
The sensing object must not come into contact with the human body

- Non-grounded Object

If the sensing object is the following non-grounded conductor, the D5C will operate if the capacitance between the sensing object and the ground is 30 pF or more. The larger the surface area of the sensing object is, the higher its capacitance will be. The shorter the distance between the sensing object and the ground is, the higher the capacitance will be. Furthermore, the capacitance greatly varies with the ground condition (e.g., dry sand, concrete, or wet soil).
Contact with Non-grounded Conductor
The sensing object is equivalently grounded through capacitor \mathbf{C}.

Generally, the conductor will be detectable if the ambient humidity is 60% to $70 \% \mathrm{RH}$ and the surface area of the conductor is approximately $300 \times 500 \mathrm{~mm}$.

C: $\mathbf{3 0 ~ p F ~ m i n . ~}$

<Conditions of Sensing Object>

- The detection of conductors (e.g., iron, stainless steel, aluminum, and brass objects) poses no particular problem. A conductor coated with paint cannot be detected, however, because there is no electrical continuity between the antenna and the conductor.
- Non-conductive objects (e.g., plastic, ceramic, glass, and cloth objects) can be detected by grounding them indirectly.
(Refer to Application Examples on page 1.)

Antenna

<Shape and Extension>

If a metal plate is used as an antenna by connecting it to the built-in or separated antenna of the D5C, the surface area of the metal plate must be $200 \mathrm{~cm}^{2}$ maximum (Fig. 1). The antenna can be extended, provided that the total length of the antenna is 1 m maximum (Fig. 2) and that the bottom of the antenna is at least 10 cm (Fig. 3) away from the ground. Refer to the illustrations below
The D5C may be damaged if the antenna is excessively large or heavy or if the antenna is used in locations with excessive vibration or shock. Be sure to check the locations before use.

Fig. 1

Fig. 2

Fig. 3

<Parallel Arrangement>

If there are multiple D5Cs are located in parallel, make sure that the distance between adjacent antennas is at least 3 cm .

Maintenance

- Make sure that the portion of the antenna that comes into contact with sensing objects is free of oil, dirt, or rust, or any other insulator. Otherwise, the D5C will not operate.
- The degree of protection of the D5C is IP67. The D5C cannot be, however, used in the water or oil.
- Locations with Sprayed Water or Oil

The D5C may malfunction in locations where the D5C is frequently exposed to sprayed water or oil. Especially, the D5C may malfunction more frequently if it is exposed to sprayed watersoluble cutting oil. In such locations, be sure to take appropriate measures to protect the D5C from oil and water.

Wiring and Connections

- Be sure to wire the D5C correctly according to the color of each cord. Incorrect wiring may damage the internal components of the D5C or the D5C may malfunction.
- A maximum of two models can be connected in series provided that 100 to 240 V is supplied. DC models cannot be connected in series.

- Be sure to supply power to the D5C via the load. If power is supplied to the D5C directly, the fuse will blow.

- If there are wire power lines or high-tension lines close to the cable of the D5C, be sure to wire the cable of the D5C away from power lines or high-tension lines or lay the cable in an exclusive, shielded conduit.
- Remove the caution label on the end of the cable before wiring the cable.

D5C-1A $\square 0$ (AC Models)

- Be aware that the D5C-1A $\square 0$ not in operation has a leakage current of approximately 2 mA . Especially, if the load is a relay with a current flow of 10 mA or less, a reset failure may result due to the residual voltage. Therefore, connect a bleeder resistor as shown below so that the residual voltage will be less than the reset voltage of the load.

The bleeder resistance and permissible power are obtained from the following formula.

$$
R \leq \frac{V s}{10-I}(K \Omega) P>\frac{V s^{2}}{R}(m W)
$$

P: W number of bleeder load (Practically, the wattage must be a few times larger than the obtainable value.)
I: Load current (mA)

- If a DC relay or DC counter is used as a load connected through an electronic timer or current rectification circuit, pay the utmost attention so that the leakage current of the D5C AC model will not cause the load to malfunction.

Sensitivity Adjustment

- The sensitivity of the D5C can be adjusted by turning the adjuster on the rear side with a flat-blade screwdriver.
- The sensitivity increases by turning the adjuster clockwise and decreases by turning the adjuster counterclockwise.

- Be sure to turn the adjuster with a torque of $0.08 \mathrm{~N} \cdot \mathrm{~m}$ or less. If excessive torque is applied, the adjuster will break.

Grounding

- In order to maintain the operational reliability of the D5C, be sure to ground the blue or black wire of the power cable.
- Operation may fail if the D5C is not grounded.
- The service power supply of the PC (Programmable Controller) is not available to the D5C-1D $\square 0$. The negative line of the service power supply of the PC is not grounded. Therefore, the D5C may not operate.
Furthermore, if the negative line of the service power supply is grounded, the noise resistance of the PC will drop.
- Provided that single-phase 200 V is supplied to the D5C-1A $\square 0$, if one phase is grounded, the power supply will be short-circuited and a machinery breakdown will result. Use an isolating transformer and ground the secondary side of the transformer instead.
- In the above case, be sure to ground the secondary side, otherwise the D5C may not operate.

The lead wire colors of the D5C have been changed in compliance with the latest applicable JIS standards. Colors in parentheses are previous ones.

Others

- Do not disassemble the D5C, otherwise the internal wiring will be damaged and the D5C will fail to operate.
- The sealing of the D5C uses nitrile butadien rubber (NBR), which is highly oil resistive. If exposed to some types of oil or chemical indoors or outdoors, however, the NBR may deteriorate. Contact your OMRON representative for details.
- When mounting the antenna to the D5C, be sure to tighten the antenna to a torque of 0.39 to $0.83 \mathrm{~N} \cdot \mathrm{~m}$. If the antenna is not tightened securely, the built-in contact may break.
- If an appropriate antenna is mounted to a free attachment model, hold the nut on the outer side with a wrench so that the nut will not move. Then tighten the nut on the inner side within a torque range of 0.78 and $1.18 \mathrm{~N} \cdot \mathrm{~m}$.

Precautions for All Limit Switches

(Not including Safety Switches)

Note: Refer to the Precautions section for each Switch for specific precautions applicable to each Switch.

Precautions for Safe Use

- If the Switch is to be used as a switch in an emergency stop circuit or in a safety circuit for preventing accidents resulting in injuries or deaths, use a Switch with a direct opening mechanism, use the NC contacts with a forced release mechanism, and set the Switch so that it will operate in direct opening mode.
For safety, install the Switch using one-way rotational screws or other similar means to prevent it from easily being removed. Protect the Switch with an appropriate cover and post a warning sign near the Switch in order to ensure the safety.
- Do not supply electric power when wiring. Otherwise electric shock may result.
- Keep the electrical load below the rated value.
- Be sure to evaluate the Switch under actual working conditions after installation.
- Do not touch the charged switch terminals while the Switch has carry current, otherwise electric shock may result.
- If the Switch has a ground terminal, be sure to connect the ground terminal to a ground wire.
- Do not disassemble the Switch while electric power is being supply. Otherwise electric shock may result.
- The durability of the Switch greatly varies with switching conditions. Before using the Switch, be sure to test the Switch under actual conditions. Make sure that the number of switching operations is within the permissible range.
If a deteriorated Switch is used continuously, insulation failures, contact weld, contact failures, switch damage, or switch burnout may result.
- Maintain an appropriate insulation distance between wires connected to the Switch.
- Some types of load have a great difference between normal current and inrush current. Make sure that the inrush current is within the permissible value. The greater the inrush current in the closed circuit is, the greater the contact abrasion or shift will be. Consequently, contact weld, contact separation failures, or insulation failures may result. Furthermore, the Switch may become broken or damaged.

Wiring

Pay the utmost attention so that each terminal is wired correctly. If the terminal is wired incorrectly, the Switch will not function. Furthermore, not only will the Switch have a bad influence on the external circuit, the Switch itself may become damaged or burnt.

Mounting

- Do not modify the actuator, otherwise the operating characteristics and performance of the actuator will change.
- Do not enlarge the mounting holes of the Switch or modify the Switch. Doing so may result in insulation failures, housing damage, or physical injuries.
- Be sure to evaluate the Switch under actual working conditions after installation.
- Do not apply oil, grease, or other lubricants to the moving parts of the actuator, otherwise the actuator may not operate correctly. Furthermore, intrusion of oil, grease, or other lubricants inside the Switch may reduce sliding characteristic or cause failures in the Switch.
- Mount the Switch and secure it with the specified screws tightened to the specified torque along with flat washers and springs. The actuator of a Pushbutton Limit Switch mounted to a panel with excessive tightening torque may not operate correctly
- Be sure to wire the Switch so that the conduit opening is free of metal powder or any other impurities
- If glue or bonding agent is applied, make sure that it does not adhere to the movable parts or intrude inside the Switch, otherwise the Switch may not work correctly or cause contact failure. Some types of glue or bonding agent may generate a gas that may have a bad influence on the Switch. Pay the utmost attention when selecting the glue or locking agent.
- Do not drop or disassemble the Switch, otherwise the Switch will not be capable of full performance. Furthermore, the Switch may become broken or burnt.
- Some models allow changes in head directions. When changing the head of such a model, make sure that the head is free of any foreign substance. Tighten each screw of the head to the rated torque.
- Be sure to take measures so that no foreign material, oil, or water will penetrate into the Switch through the conduit opening. Be sure to attach a connector suited to the cable thickness and tighten the connector securely to the rated torque.
- Do not impose shock or vibration on the actuator while it is fully pressed. Otherwise, the actuator will partially abrade and an actuation failure may result.

Wiring

- If the wiring method is incorrect, the wires may get caught on objects or the lead wires may be pulled excessively. Make sure that the lead wires are sufficiently long and secure them along the wiring path.

- Pay the utmost attention so that each terminal is wired correctly. If a terminal is wired incorrectly, the Limit Switch will not function properly. Furthermore, not only will the Limit Switch have an adverse influence on external circuits, the Limit Switch itself may become damaged or burnt.

Precautions for Correct Use
For details, refer to Precautions for Correct Use in the Technical Guide for Limit Switches.

Technical Guide for Limit Switches

Precautions for Correct Use

Switch Operation

- The Switch in actual operation may cause accidents that cannot be foreseen from the design stage. Therefore, the Switch must be practically tested before actual use.
- When testing the Switch, be sure to apply the actual load condition together with the actual operating environment.
- All the performance ratings in this catalog are provided under the following conditions unless otherwise specified.
Inductive load:
A minimum power factor of 0.4 (AC) or a maximum time constant of 7 ms (DC)
Lamp load:
An inrush current 10 times higher than the normal current
Motor load:
An inrush current 6 times higher than the normal current
(1) Ambient temperature: $+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$
(2) Ambient humidity: 40% to $70 \% \mathrm{RH}$

Note: An inductive load causes a problem especially in DC circuitry. Therefore, it is essential to know the time constants (L/R) of the load.

Mechanical Characteristics

Operating Force, Stroke, and Contact Characteristics

- The following graph indicates the relationship between operating force and stroke or stroke and contact force. In order to operate the Limit Switch with high reliability, it is necessary to use the Limit Switch within an appropriate contact force range. If the Limit Switch is used in a normally closed condition, the dog must be installed so that the actuator will return to the FP when the actuator is actuated by the dog. If the Limit Switch is used in a normally open condition, the actuator must be pressed to 70% to 100% of the OT (i.e., 60% to 80% of the TT) and any slight fluctuation must be absorbed by the actuator.
- If the full stroke is set close to the OP or RP, contact instability may result. If the full stroke is set to the TTP, the actuator or switch may become damaged due to the inertia of the dog. In that case, adjust the stroke with the mounting panel or the dog.
Refer to page 11, Dog Design, page 12, Stroke Settings vs. Dog Movement Distance, and page 12, Dog Surface for details.
- The following graph shows an example of changes in contact force according to the stroke. The contact force near the OP or RP is unstable, and the Limit Switch cannot maintain high reliability. Furthermore, the Limit Switch cannot withstand strong vibration or shock.

- If the Limit Switch is used so that the actuator is constantly pressed, it will fail quickly and reset faults may occur. Inspect the Limit Switch periodically and replace it as required.

Mechanical Conditions for Switch Selection

- The actuator must be selected according to the operating method. (Refer to page 9.)
- Check the operating speed and switching frequency.

1. If the operating speed is extremely low, the switching of the movable contact will become unstable, thus resulting in incorrect contact or contact weld.
2. If the operating speed is extremely high, the Switch may break due to shock. If the switching frequency is high, the switching of the contacts cannot catch up with the switching frequency. Make sure that the switching frequency is within the rated switching frequency.

- Do not impose excessive force on the actuator, otherwise the actuator may become damaged or not operate correctly.
- Make sure that the stroke is set within the suitable range specified for the model, or otherwise the Switch may break.

Electrical Characteristics

Electrical Characteristics for Switch Selection

- The switching load capacity of the Switch greatly varies between AC and DC. Always be sure to apply the rated load. The control capacity will drastically drop if it is a DC load. This is because a DC load has no current zero-cross point, unlike an AC load. Therefore, if an arc is generated, it may continue comparatively for a long time. Furthermore, the current direction is always the same, which results in a contact relocation phenomena whereby the contacts easily stick to each other and do not separate when the surfaces of the contacts are uneven.
- If the load is inductive, counter-electromotive voltage will be generated. The higher the voltage is, the higher the generated energy will be, which will increase the abrasion of the contacts and contact relocation phenomena. Be sure to use the Switch within the rated conditions.
- If the load is a minute voltage or current load, use a dedicated Switch for minute loads. The reliability of silver-plated contacts, which are used by standard Switches, will be insufficient if the load is a minute voltage or current load.

Contact Protective Circuit

Apply a contact protective circuit to increase the contact durability, prevent noise, and suppress the generation of carbide or nitric acid. Be sure to apply the contact protective circuit correctly, otherwise an adverse effect may occur.
The following provides typical examples of contact protective circuits. If the Switch is used in an excessively humid location for switching a load that easily generates arcs, such as an inductive load, the arcs
may generate NOx , which will change into HNO_{3} if it reacts with moisture.
Consequently, the internal metal parts may corrode and the Switch may fail. Be sure to select the ideal contact preventive circuit from the following.
Also, load operating times may be delayed somewhat if a contact protective circuit (a surge killer) is used.

Typical Examples of Contact Protective Circuits

Circuit example		Applicable current		Feature and details	Element selection
		AC	DC		
		Conditional *	0	* When AC is switched, the load impedance must be lower than the CR impedance.	C: 1 to $0.5 \mu \mathrm{~F} \times$ switching current (A) R: 0.5 to $1 \Omega \times$ switching voltage (V) The values may change according to the characteristics of the load. The capacitor suppresses the spark discharge of current when the contacts are open. The resistor limits the inrush current when the contacts are
CR circuit		0	0	The operating time will be greater if the load is a relay or solenoid. Connecting the CR circuit in parallel to the load is effective when the power supply voltage is 24 or 48 V and in parallel to the contacts when the power supply voltage is 100 to 200 V .	resistance values through testing. Generally, use a capacitor that has a dielectric strength of between 200 and 300 V . Use an AC capacitor for an AC circuit, i.e., a capacitor that has no polarity. If, however, the arc shutoff capacity between the contacts is a problem at high DC voltages, it may be more effective to connect a capacitor and resistor across the contacts rather than the load. Performing testing to determine the most suitable method.
Diode method		\times	0	Energy stored in the coil is changed into current by the diode connected in parallel to the load. Then the current flowing to the coil is consumed and Joule heat is generated by the resistance of the inductive load. The reset time delay with this method is longer than that in the CR method.	The diode must withstand a peak inverse voltage 10 times higher than the circuit voltage and a forward current as high or higher than the load current.
Diode and Zener diode method		\times	0	This method will be effective if the reset time delay caused by the diode method is too long.	If a suitable Zener voltage is not used, the load may fail to operate depending on the environment. Use a Zener diode with a Zener voltage that is about 1.2 times the power supply voltage.
Varistor method		0	0	This method makes use of constant-voltage characteristic of the varistor so that no high voltage is imposed on the contacts. This method causes a reset time delay. Connecting a varistor in parallel to the load is effective when the supply voltage is 24 to 48 V and in parallel to the contacts when the supply voltage is 100 to 200 V .	Select a varistor with a cut voltage Vc that satisfies the following formula. For AC, the voltage must be multiplied by the square root of 2 . $\mathrm{Vc}>$ Power supply voltage $\times 1.5$ If Vc is set too high, effectiveness will be reduced because high voltages will not be cut.

Do not apply contact protective circuits (surge killers) as shown below.

Using Switches for Micro Loads

Contact faults may occur if a Switch for a general-load is used to switch a micro load circuit. Use switches in the ranges shown in the diagram on the right. However, even when using micro load models within the operating range shown here, if inrush current occurs when the contact is opened or closed, it may increase contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary. The minimum applicable load is the N -level reference value. This value indicates the malfunction reference level for the reliability level of 60% (λ_{60}).
The equation, $\lambda_{60}=0.5 \times 10^{-6} /$ operations indicates that the estimated malfunction rate is less than $1 / 2,000,000$ operations with a reliability level of 60%.

Connections

- Do not connect a Single Limit Switch to two power supplies that are different in polarity or type.
Power Connection Examples (Connection of Different Polarities)

Incorrect Power Connection Example (Connection of Different Power Supplies) There is a risk of AC and DC mixing.

Connect the load to the same polarities.

- Do not design a circuit where voltage is imposed between contacts, otherwise contact welding may result.

- Do not use a circuit that will short-circuit if an error occurs, otherwise the charged part may melt and break off.

- Application of Switch to a Low-voltage, Low-current Electronic Circuit.

1. If bouncing or chattering of the contacts results and causes problems, take the following countermeasures.
(a)Insert an integral circuit.
(b)Suppress the generation of pulse from the contact bouncing or chattering of the contacts so that it is less than the noise margin of the load.
2. Conventional silver-plated contacts are not suited to this application. Use gold-plated contacts, which are ideal for handling minute voltage or current loads.
3. The contacts of the Switch used for an emergency stop must be normally closed with a positive opening mechanism.

- In order to protect the Switch from damage due to short-circuits, be sure to connect a quick-response fuse with a breaking current 1.5 to 2 times larger than the rated current to the Switch in series. When complying with EN approved ratings, use a 10-A IEC 60269compliant gl or gG fuse.

Operating Environment

- Do not use the Switch by itself in atmospheres containing flammable or explosive gases. Arcs and heating resulting from switching may cause fire or explosion.
- Use protective covers to protect Switches that are not specified as waterproof or airtight whenever they are used in locations subject to splattering or spraying oil or water, or to accumulation of dust or dirt.

- The materials of Limit Switch may change in quality or deteriorate if the Limit Switch is used outdoors or any other location where the Limit Switch is exposed to special machining oil. Consult your OMRON representative before selecting the model.
- Be sure to install the Switch so that the Switch is free from dust or metal powder. The actuator and the switch casing must be protected from the accumulation of dust or metal powder.

- Do not use the Switch in locations where the Switch is exposed to hot water at a temperature greater than $60^{\circ} \mathrm{C}$ or steam.
- Do not use the Switch under temperatures or other environmental conditions not within the specified ranges.
The rated permissible ambient temperature range varies with the model. Refer to the specifications in this catalog. If the Switch is exposed to radical temperature changes, the thermal shock may deform the Switch and the Switch may malfunction.

- Be sure to protect the Switch with a cover if the Switch is in a location where the Switch may be actuated by mistake or where the Switch is likely cause an accident.

- If vibration or shock is continuously imposed on the Switch, contact failure, malfunction, or decrease in service life may be caused by abrasive powder generated from the internal parts. If excessive vibration or shock is imposed on the Switch, the contacts may malfunction or become damaged. Make sure to install the Switch in locations free of constant vibration or shock.
- Do not use the Switch with silver-plated contacts for long periods if the switching frequency of the Switch is comparatively low or the load is minute. Otherwise, sulfuric film will be generated on the contacts and contact failures may result. Use the Switch with goldplated contacts or use a dedicated Switch for minute loads instead.
- Do not use the Switch in locations with corrosive gas, such as sulfuric gas $\left(\mathrm{H}_{2} \mathrm{~S}\right.$ or $\left.\mathrm{SO}_{2}\right)$, ammonium gas $\left(\mathrm{NH}_{3}\right)$, nitric gas $\left(\mathrm{HNO}_{3}\right)$, or chlorine gas (Cl_{2}), or high temperature and humidity. Otherwise, contact failure or corrosion damage may result.
- If the Switch is used in locations with silicone gas, arc energy may create silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ on the contacts and a contact failure may result. If there is silicone oil, silicone sealant, or wire covered with silicone close to the Switch, attach a contact protective circuit to suppress the arcing of the Switch or eliminate the source of silicone gas generation.

Regular Inspection and Replacement

- If the Switch is normally closed with low switching frequency (e.g., once or less than once a day), a reset failure may result due to the deterioration of the parts of the Switch. Regularly inspect the Switch and make sure that the Switch is in good working order
- In addition to the mechanical durability or electrical durability of the Switch described previously, the durability of the Switch may decrease due to the deterioration of each part, especially rubber, resin, and metal. Regularly inspect the Switch and replace any part that has deteriorated in order to prevent accidents from occurring.
- If the Switch is not turned On or OFF for a long time, oxidation of the contacts may decrease contact reliability. Faulty continuity may result in accidents.
- Be sure to mount the Switch securely in a clean location to ensure ease of inspection and replacement. The Switch with operation indicator is available, which is ideal if the location is dark or does not allow easy inspection or replacement.

Difficult to inspect or install

Easy to inspect

The cover must be located in the direction ensuring ease of maintenance or inspection.

Storage of Switch

- When storing the Switch, make sure that the location is free of corrosive gas, such as $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NH}_{3}, \mathrm{HNO}_{3}$, or Cl_{2}, or dust and does not have a high temperature or humidity.
- Be sure to inspect the Switch before use if it has been stored for three months or more.

Weather Resistance, Cold Resistance, and Heat Resistance

Silicon rubber is used to increase resistance to weather, cold, and heat. Silicon rubber, however, can generate silicon gas. (This can occur at room temperature, but the amount of silicon gas generated increases at higher temperatures.) Silicon gas will react as a result of arc energy and form silicon oxide (SiO_{2}). If silicon oxide accumulates on the contacts, contact interference can occur and can interfere with the device. Before using a Switch, test it under actual application conditions (including the environment and operating frequency) to confirm that no problems will occur in actual.

Outdoor Use

- If the Limit Switch is used in places with sludge or dust powder spray, make sure that the mechanical parts are sealed with a rubber cap.
- The rubber materials exposed to ozone may deteriorate. Check that the rubber parts are made of environment-resistive materials, such as chloroprene, silicone, or fluorine rubber.
- Due to capillary attraction, rainwater may enter the Limit Switch through the lead wires or sheath. Be sure to cover the wire connections in a terminal box so that they are not directly exposed to rainwater.
- If the Limit Switch is used outdoors, the steel parts of the Limit Switch (such as the screws and plunger parts) may corrode. Models with resistance against climatic conditions have been added to the series. Consider using outdoor models, such as the WL- $\square \mathrm{P} 1$ or D4C- $\square \mathrm{P}$.
- "Limit Switch is used outdoors" refers to an environment where the Limit Switch is exposed directly to rainwater or sunlight (e.g., multistory parking facilities) excluding locations with corrosive gas or salty breezes. A Limit Switch used outdoors may not release due to icing and may not satisfy specified standards.

Operation

- Carefully determine the position and shape of the dog or cam so that the actuator will not abruptly snap back, thus causing shock. In order to operate the Limit Switch at a comparatively high speed, use a dog or cam that keeps the Limit Switch turned ON for a sufficient time so that the relay or valve will be sufficiently energized.
- The method of operation, the shape of the cam or dog, the operating frequency, and the travel after operation have a large influence on the durability and operating accuracy of the Limit Switch. The cam or dog must be smooth in shape.

- Appropriate force must be imposed on the actuator by the cam or dog in both rotary operation and linear operation.
If the dog touches the lever as shown below, the operating position will not be stable.

Correct

- Unbalanced force must not be imposed on the actuator. Otherwise, wear and tear on the actuator may result.

- With a roller actuator, the dog must touch the actuator at a right angle. The actuator or shaft may deform or break if the dog touches the actuator (roller) at an oblique angle.

- Make sure that the actuator does not exceed the OT (overtravel) range, otherwise the Limit Switch may malfunction. When mounting the Limit Switch, be sure to adjust the Limit Switch carefully while considering the whole movement of the actuator.

- The Limit Switch may soon malfunction if the OT is excessive. Therefore, adjustments and careful consideration of the position of the Limit Switch and the expected OT of the operating body are necessary when mounting the Limit Switch.

- When using a pin-plunger actuator, make sure that the stroke of the actuator and the movement of the dog are located along a single straight line.

- Be sure to use the Limit Switch according to the characteristics of the actuator.
If a roller arm lever actuator is used, do not attempt to actuate the Limit Switch in the direction shown below.

Incorrect

- Do not modify the actuator to change the OP.
- With the long actuator of an Adjustable Roller Lever Switch, the following countermeasures against lever shaking are recommended.
1.Make the rear edge of the dog smooth with an angle of 15° to 30° or make it in the shape of a quadratic curve.

2. Design the circuit so that no error signal will be generated.
3.Use a switch that is actuated in one direction only. (Alternatively, set the Switch so that it is operated only in one direction.)

- With a bevel plunger actuator, make sure that the width of the dog is wider than that of the plunger.

Dog Design

Speed and Angle of Dog and Relationship with Actuator

Before designing a dog, carefully consider the operating speed and angle of the dog (ϕ) and their relationship with the shape of the actuator. The optimum operating speed (V) of a standard dog at an angle of 30° to 45° is $0.5 \mathrm{~m} / \mathrm{s}$ maximum.

Roller Lever Switches

(1) Non-overtravel Dog

θ	ϕ	V max. (m/s)	\mathbf{y}
45°	45°	0.5	0.5 to $0.8(\mathrm{TT})$
50°	40°	0.6	0.5 to $0.8(\mathrm{TT})$
60° to 55°	30° to 35°	1.3	0.5 to $0.7(\mathrm{TT})$
75° to 65°	15° to 25°	2	0.5 to $0.7(\mathrm{TT})$

Note: The above y values indicate the ratio ranges based on TT (total travel). Therefore, the optimum pressing distance of the dog is between 50% and 80% (or 50% and 70%).
(2) Overtravel Dog

If the speed of the overtravel dog is comparatively high, make the rear edge of the dog smooth at an angle of 15° to 30° or make it in the shape of a quadratic curve. Then lever shaking will be reduced.

θ	ϕ	V max. (m/s)	\mathbf{y}
45°	45°	0.5	0.5 to 0.8 (TT)
50°	40°	0.6	0.5 to 0.8 (TT)
60° to 55°	30° to 35°	1.3	0.5 to 0.7 (TT)
75° to 65°	15° to 25°	2	0.5 to 0.7 (TT)

Note: The above y values indicate the ratio ranges based on TT (total travel). Therefore, the optimum pressing distance of the dog is between 50% and 80% (or 50% and 70%).

Plunger Switches

If the dog overrides the actuator, the front and rear of the dog may be the same in shape, provided that the dog is not designed to be separated from the actuator abruptly.

Roller Plunger			
$v-1$	ϕ	V max. (m/s)	y
y -	30°	0.25	0.6 to 0.8 (TT)
)	20°	0.5	0.5 to 0.7 (TT)

Ball Plunger

ϕ	V max. (m/s)	\mathbf{y}
30°	0.25	0.6 to 0.8 (TT)
20°	0.5	0.5 to 0.7 (TT)

Bevel Plunger			
\bar{v}, ${ }_{\text {d }}$	ϕ	V max. (m/s)	y
y	30°	0.25	0.6 to 0.8 (TT)
-	20°	0.5	0.5 to 0.7 (TT)

Note: The above y values indicate the ratio ranges based on TT (total travel)
Therefore, the optimum pressing distance of the dog is between 60% and 80% (or 50% and 70%).

Fork Lever Lock Models

Note: Design the shape of the dog so that it does not come in contact with the other roller lever when the actuator is inverted.

Stroke Settings vs. Dog Movement Distance

- The following information on stroke settings is based on the movement distance of the dog instead of the actuator angle. The following is the optimum stroke of the Limit Switch. Optimum stroke: PT $+\{$ Rated OT $\times(0.7$ to 1.0$)\}$ In terms of angles, the optimum stroke is expressed as $\theta_{1}+\theta_{2}$.

- The movement distance of the dog based on the optimum stroke is expressed by the following formula.
Movement distance of dog

$$
X=R \sin \theta+\frac{R(1-\cos \theta)}{\tan \phi}(\mathrm{mm})
$$

ф: Dog angle
θ : Optimum stroke angle
R : Actuator length
X: Dog movement distance

- The distance between the reference line and the bottom of the dog based on the optimum stroke is expressed by the following formula. $Y=a+b+r(m m)$

a: Distance between reference line and actuator fulcrum
b: R $\cos \theta$
r: Roller radius
Y : Distance between reference line and bottom of dog

Dog Surface

The surface of dog touching the actuator should be 6.3 S in quality and a hardness of approximately HV450.
For smooth operation of the actuator, apply molybdenum disulfide grease to the actuator and the dog touching the actuator. This is ideal for Limit Switches of drip-proof construction and Multiple Limit Switches.

Maintenance and Repairs

The user of the system must not attempt to perform maintenance and repairs. Contact the manufacturer of the system concerning maintenance and repairs.

Other

- The standard material for the switch seal is nitrile rubber (NBR), which has superior resistance to oil. Depending on the type of oil or chemicals in the application environment, however, NBR may deteriorate, e.g., swell or shrink. Confirm performance in advance.
- The correct Switch must be selected for the load to ensure contact reliability. Refer to precautions for micro loads in individual product information for details.
- When using a Limit Switch with a long lever or long rod lever, make sure that the lever is in the downward direction.
- Wire the leads as shown in the following diagram.

Correct Wiring

Incorrect Wiring

- Reduced ambient temperature tends to result in hardening of the actuator's rubber seal. Therefore, reset may be delayed or reset may fail if the Switch is used with the actuator continually pressed in. Contact your OMRON representative if the Switch is to be used for this type of environment or application.

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS, OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the product.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the product may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased product.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

ERRORS AND OMISSIONS

The information in this catalog has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

COPYRIGHT AND COPY PERMISSION

This catalog shall not be copied for sales or promotions without permission.
This catalog is protected by copyright and is intended solely for use in conjunction with the product. Please notify us before copying or reproducing this catalog in any manner, for any other purpose. If copying or transmitting this catalog to another, please copy or transmit it in its entirety.

